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The phosphine-catalyzed [3 + 2] and [3 + 3] annulation
reactions of azomethine imines and ethyl 2-butynoate were
developed, providing 1,2-dinitrogen-containing heterocycles
tetrahydropyrazolopyrazolones and tetrahydropyrazolopyridazi-
nones in moderate to good yields.

Over the last twenty years, nucleophilic phosphine catalysis
has been successfully developed as one of the most powerful
tools for convergent synthesis of a broad range of carbo- and
heterocycles from simple starting materials.1 Under the nucleo-
philic phosphine catalysis conditions, activated allenes have
often been used as versatile synthons and exhibited diverse
reactivity toward a variety of electrophilic partners including
aldehydes, activated alkenes, imines, or aziridines, furnishing
all kinds of formal cycloaddition reactions.1 Most recently, we
reported the first phosphine-catalyzed [3 + 2], [3 + 3], [4 + 3],
and [3 + 2 + 3] annulation reactions of allenoates with azo-
methine imines, providing generally applicable routes toward
dinitrogen-fused heterocycles, such as tetrahydropyrazolo-pyr-
azolone, -pyridazinone, -diazepinone, and -diazocinone,2 which
are key units in or building blocks of many pharmaceuticals,
agrochemicals, biologically active compounds, and other useful
chemicals.3 Using phosphine as the catalyst, ethyl 2,3-butadi-
enoate, served as a two- or three-carbon component to undergo
the [3 + 2] or [3 + 3] annulation reactions with azomethine
imine (1-(p-nitrobenzylidene)-3-oxopyrazolidin-1-ium-2-ide),
giving tetrahydropyrazolo-pyrazolone and -pyridazinone.2 It is
known that ethyl 2-butynoate could undergo the same annulation
processes as ethyl 2,3-butadienoate under the phosphine
catalysis conditions.4 As ethyl 2-butynoate is commercially
available and very cheap, and tetrahydropyrazolo-pyrazolone
and -pyridazinone are important biologically active com-
pounds,3 we attempted to investigating the cycloaddition
reaction of various azomethine imines with ethyl 2-butynoate.
Herein, we described the [3 + 2] and [3 + 3] cycloaddition of
azomethine imines with ethyl 2-butynoate to furnish function-
alized 1,2-dinitrogen-fused heterocycles (Scheme 1).

Initially, the annulation reactions of ethyl 2-butynoate (2)
with 1-(p-nitrobenzylidene)-3-oxopyrazolidin-1-ium-2-ide (1a)
were performed to screen the appropriate reaction conditions
(Table 1). The azomethine imines have been extensively
employed as efficient 1,3-dipoles in a variety of metal-catalyzed
or organocatalytic cycloadditions5 and can easily be prepared
from the reaction of pyrazolidin-3-one with aldehydes.2,5b5d In
the presence of 20mol% PBu3, azomethine imine 1a was treated
with ethyl 2-butynoate (2) in dichloromethane at room temper-
ature for 12 h to provide the tetrahydropyrazolopyrazolone 3a as

a single (E)-isomer and the tetrahydropyrazolopyridazinone
4a as a single trans diastereoisomer in 49 and 34% yields,
respectively (Table 1, Entry 1).6 Considering that the efficiency
of nucleophilic phosphine catalysis was often influenced by the
nature of the tertiary-phosphine catalyst, several phosphines with
different nucleophilicity had been screened for improving the
yield and chemoselectivity (Entries 25). When phosphines
PMe3, MePPh2, and Me2PPh were utilized as catalysts, the
[3 + 2] cycloaddition product 3a was obtained as the major
product in 34, 30, and 65% yield, respectively, and the [3 + 3]
product 4a was produced with 6, 3, and 14% yield, respectively
(Entries 2, 3, and 4). Dimethylphenylphosphine achieved the
best overall reaction efficiency, providing 65% yield of 3a and
14% yield of 4a (Entry 4). Methyldiphenylphosphine demon-
strated the best chemoselectivity toward [3 + 2] product,
affording 30% yield of 3a and 3% yield of 4a (Entry 3),
however, its overall yield (33%) was somewhat bad. Hexameth-
ylphosphorous triamide (HMPT) was quite sluggish, producing
no product 3a, and trace amount of product 4a (Entry 5). In this
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Scheme 1. The [3 + 2] and [3 + 3] annulation of azomethine
imine 1 with ethyl 2-butynoate (2).

Table 1. Phosphine-catalyzed annulations of the azomethine
imine 1a with ethyl 2-butynoate (2)a
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Entry PR3 Time/h
3a yield
/%b

4a yield
/%b

1 PBu3 12 49 34
2 PMe3 24 34 6
3 MePPh2 72 30 3
4 Me2PPh 24 65 14
5 HMPT 24 ® Trace

a1.2 equiv of ethyl 2-butynoate was used. bIsolated yield.
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research, both tetrahydropyrazolopyrazolone 3 and the tetra-
hydropyrazolopyridazinone 4 were desired to be obtained in
reasonable yield, therefore, tributylphosphine was chosen as the
catalyst.

Using 20mol% of tributylphosphine as the catalyst, the
[3 + 2] and [3 + 3] annulation reactions of ethyl 2-butynoate (2)
with a range of azomethine imines 1 were carried out in
dichloromethane at room temperature within a given time period
(Table 2). A variety of aromatic azomethine imines 1 underwent
the [3 + 2] and [3 + 3] cycloaddition, providing the anticipated
tetrahydropyrazolopyrazolone and tetrahydropyrazolopyridazi-
none products in moderate to good yields (Entries 111).7

A wide range of aryl groups with electron-donating and
-withdrawing substituents on the benzene ring could be tolerated
in the process. In general, the azomethine imines bearing strong
electron-withdrawing groups such as nitro and cyano on the
ortho- or para-position of the benzene ring afforded much higher
yields of the corresponding cyclization products than the imines
with phenyl and bearing electron-donating and weak electron-
withdrawing groups on benzene did (Entry 1 in Table 1, Entries
6 and 8 in Table 2 versus Entries 15 in Table 2), but the
chemoselectivities of the former toward [3 + 2] product were
much lower than that of the latter (Entry 1 in Table 1, Entries 6
and 8 in Table 2 versus Entries 15 in Table 2). Interestingly,
the azomethine imines bearing nitro on the meta-position were
not very active to give a moderate yield of the cycloadduct
(Entry 9). The phenomenon could be attributed to the weak
electron-withdrawing effect of a nitro group at the meta-position
of a benzene ring. The azomethine imines bearing 1-naphthyl
(Entry 10) and 2-naphthyl (Entry 11) also underwent the cy-
clization reaction with 2-butynoate 2, affording the correspond-
ing pyrazolidinone derivatives in sound yields. Alkylimine
could also carry out the annulation with ethyl 2-butynoate (2) to
give only [3 + 2] product, albeit in low yield (Entry 12). In all
reactions, the [3 + 2] annulation products were always obtained
as the major product in a single (E)-isomer (Entries 112), and
the [3 + 3] cycloadduct were obtained as the minor product in a
single trans diastereoisomer.

The reaction of ethyl 2-pentynoate with azomethine imine
1a has also been checked, unfortunately, no cycloaddition
product could be isolated after the reaction was carried out in
dichloromethane at room temperature for 72 h.

According to the reported mechanistic studies on nucleo-
philic phosphine-catalyzed reactions,2 a plausible mechanism for
the [3 + 2] and [3 + 3] cycloaddition of azomethine imines 1
with ethyl 2-butynoate (2) is proposed (Scheme 2). The addition
of the Lewis-basic phosphine to the electrophilic ¢-carbon of
ethyl 2-butynoate (2), results in the formation of a zwitterionic
intermediate A. The conversion of vinyl anion A to ¢-phospho-

Table 2. PBu3-catalyzed [3 + 2] and [3 + 3] cycloadditions of
azomethine imines 1 with ethyl 2-butynoate (2)a
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Entry R
Time
/h

Product
Yield
/%b 3:4

1 C6H5 (1b) 36 3b + 4b 44 82:18
2 4-MeC6H4 (1c) 72 3c + 4c 60 90:10
3 4-i-PrC6H4 (1d) 72 3d + 4d 51 97:3
4 4-FC6H4 (1e) 72 3e + 4e 54 95:5
5 4-BrC6H4 (1f) 72 3f + 4f 64 82:18
6 4-CNC6H4 (1g) 24 3g + 4g 76 51:49
7 4-CF3C6H4 (1h) 72 3h + 4h 44 86:24
8 2-NO2C6H4 (1i) 72 3i + 4i 78 68:32
9 3-NO2C6H4 (1j) 72 3j + 4j 52 57:43

10 1-naphthyl (1k) 72 3k + 4k 60 96:4
11 2-naphthyl (1l) 72 3l + 4l 61 90:10
12 cyclohexyl (1m) 72 3m 27 100:0
a1.2 equiv of ethyl 2-butynoate was used. bIsolated yield.
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Scheme 2. Proposed mechanism for the [3 + 2] and [3 + 3] annulation of azomethine imines with ethyl 2-butynoate.
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nium enoate B § C should be thermodynamically favorable.
In the case of using ethyl 2,3-butadienoate (2¤), ¢-phosphonium
enoate B and C can directly be generated by the addition of
phosphine to the ¢-carbon of 2¤.2 The £-carbon anion of ¢-
phosphonium enoate B attacks azomethine imine 1 leading to
the formation of the amide D. Intramolecular conjugate addition
of amide to the ¢-phosphonium enoate motif of intermediate D
accomplishes the [3 + 2] cyclization to give ¢-phosphonium
ester E, which undergoes a facile ¢-elimination to regenerate the
catalyst and form the final tetrahydropyrazolopyrazolone prod-
ucts 3, which are (E)-trisubstituted exocyclic alkylidenes. The
distribution of the geometric isomers of [3 + 2] product would
be thermodynamically controlled by the action of the phos-
phine.2 Thus, the equilibrium between the intermediates E and
the products 3 can support the exclusive formation of the more
stable (E)-isomer 3. Following another competing pathway, the
¡-carbon anion of zwitterion C attacks azomethine imine 1 to
give the phosphonium amide F, which carries out the 6-endo
cyclization to deliver the ylide G. The ¢-phosphonium ester H
formed by proton transfer from G expels phosphine and
provides the tetrahydropyrazolopyridazinone I, which isomer-
izes into [3 + 3] annulation product 4.

In summary, we have developed phosphine-catalyzed
[3 + 2] and [3 + 3] cycloaddition reactions of azomethine
imines with ethyl 2-butynoate. Reactions are operationally
simple and proceed smoothly under very mild reaction con-
ditions, providing a broad range of tetrahydropyrazolo-pyrazo-
lones and -pyridazinones in moderate to good yield.
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